Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Saudi J Biol Sci ; 31(6): 104005, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741655

RESUMO

Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), is an economically important invasive cassava pest responsible for the massive devastation of cassava in Asia and African continent. Initially, identifying this invasive pest posed challenges because it closely resembled native mealybug species. Additionally, the traditional morphological identification process is labor-intensive and time-consuming. Detecting invasive pests at an early stage is crucial, hence development of a rapid detection assay is essential. In the current study, we have developed a simple, rapid, sensitive, and efficient molecular detection assay for P. manihoti based on Recombinase Polymerase Amplification (RPA). The primers for the RPA assay were designed using unique nucleic acid sequences of P. manihoti, and the protocol was standardized. Specificity test demonstrated that the RPA assay could amplify DNA of P. manihoti only, and no amplification was observed in six other mealybug species. The specificity of assay was confirmed using SYBR green-based colorimetric detection and gel electrophoresis where positive samples showed 195 bp amplicon size in P. manihoti samples. The assay successfully amplified P. manihoti DNA in thirty minutes at an annealing temperature of 41° C in a water bath and displayed a sensitivity of 72.5 picograms per microliter. The assay's simplicity, rapidity, and high sensitivity make it a valuable tool for detecting and monitoring P. manihoti in quarantine stations and facilitating in development of a portable diagnostic kit.

2.
Mol Biol Rep ; 51(1): 355, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400844

RESUMO

Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.


Assuntos
Nanopartículas , RNA de Cadeia Dupla , Animais , Insetos/genética , Interferência de RNA , Lipossomos/metabolismo , Controle de Pragas
3.
Pestic Biochem Physiol ; 198: 105712, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225070

RESUMO

Bemisia tabaci is a global invasive pest causing substantial loss on several economically important crops and has developed a very high level of resistance to insecticides making current management practices ineffective. Thus, the novel pest management strategy like RNA interference (RNAi) has emerged as a potential molecular tool in the management of insect pests particularly B. tabaci. The present study investigated RNAi mediated silencing of the Ecdysone Receptor (EcR) gene in B. tabaci Asia-I using biodegradable Chitosan Nanoparticles (CNPs) hydrogel containing EcR dsRNA. The formation of nanohydrogel and dsRNA loading were characterized by gel retardation assay, scanning electron microscopy (SEM); transmission electron microscopy (TEM) and Fourier transform infrared microscopy (FTIR). The stability of CNPs/dsRNA was assessed by exposure to direct sunlight and UV light for different time periods. The CNPs/dsRNA exhibited increased stability over the untreated control and further confirmed by bioassay studies which yielded mortality over 80% and effectively down regulated the expression of the EcR gene as confirmed by qRT-PCR analysis. These investigations provide potential avenues for advancing innovative pest management strategies using biopolymer CNPs hydrogel, which can enhance the efficiency of dsRNA as a safe and targeted solution in the management of whiteflies.


Assuntos
Quitosana , Hemípteros , Receptores de Esteroides , Animais , Quitosana/farmacologia , Quitosana/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Interferência de RNA , Hidrogéis/metabolismo
4.
Int J Radiat Biol ; 99(8): 1267-1284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745747

RESUMO

PURPOSE: During post-rainy and rice fallow cropping seasons, popular blackgram varieties are severely affected by powdery mildew leading to severe yield loss. The lack of natural genetic variability for powdery mildew resistance in blackgram germplasm warrants mutation breeding. Hence, in this study, blackgram cultivar CO6 was mutagenized with gamma ray and ethyl methanesulphonate (EMS) to create variability for powdery mildew resistance. MATERIALS AND METHODS: Seeds of blackgram CO6 were irradiated with three doses of gamma ray (200 Gy, 300 Gy and 400 Gy) followed by two doses of ethyl methanesulphonate (EMS; 20 and 30 mM) to achieve six combination treatments. Selected resistant mutants of M2 generation were characterized for agronomic, histological, enzyme and biochemical traits along with powdery mildew resistant LBG 17 and susceptible CO6 checks. Molecular variability was studied using 72 simple sequence repeat (SSR) markers. RESULTS: In the M2 generation, 60 powdery mildew resistant mutants were identified and a total of 25 high yielding mutants were evaluated further to confirm powdery mildew resistance and yield. Nine resistant mutants (PM 13, PM 20, PM 21, PM 42, PM 53, PM 54, PM 56, PM 57 and PM 60) and the resistant check (LBG17) showed significantly higher values for leaf density, trichome density, SOD, CAT, POX, PPO, total phenols, phytic acid and silica content. SSR markers viz., CEDG154, CEDG290, CEDG139, CEDG259, CEDG191, CEDG024, CEDG 282, CEDG 166, CEDG 232 and CEDG 088 were found polymorphic between resistant mutants and the parent CO6. CONCLUSION: The study has demonstrated that sufficient variability was induced in the blackgram for powdery mildew resistance. The elevated levels of SOD, CAT, POX, PPO, total phenols, phytic acid, and silica content observed in selected mutants may be attributed to powdery mildew resistance. The superior mutants identified in this study may be used as donors for the development of powdery mildew resistant lines or released as a new variety.


Assuntos
Ascomicetos , Vigna , Metanossulfonato de Etila , Raios gama , Ácido Fítico , Doenças das Plantas/genética , Superóxido Dismutase , Fenóis
5.
J Econ Entomol ; 115(4): 1268-1278, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595222

RESUMO

Diamondback moth, Plutella xylostella is a serious pest of cruciferous vegetables and causes substantial economic loss all over the world. This study was undertaken to decipher the molecular mechanisms involved in the field evolved insecticide resistance in P. xylostella upon exposure to spinosad. To do so, spinosad-resistant and susceptible larval populations were subjected to transcriptome analysis using Illumina paired-end sequencing. De novo assembly was generated from raw reads of both the samples which resulted in the identification of 41,205 unigenes. Functional annotation and digital gene expression analysis were carried out to determine the differentially expressed genes. 1,348 unigenes were found to have a significant differential expression in the resistant population. Several genes involved in insecticide resistance like CYP P450, GSTs, small heat shock protein, and UDP glycosyltransferase were found to be up-regulated while genes related to mitochondrial energy metabolism and cuticular processes were down-regulated. Further, gene mining and phylogenetic analysis of two important gene families namely, CYP and GSTs were performed and the results revealed that these genes could play a major role in the development of field evolved spinosad resistance in P. xylostella by gene duplication and differential gene expression.


Assuntos
Inseticidas , Mariposas , Animais , Combinação de Medicamentos , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Macrolídeos , Filogenia , Transcriptoma
6.
J Microbiol Biotechnol ; 28(6): 976-986, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29976032

RESUMO

Knowledge about the gut bacterial communities associated with insects is essential to understand their roles in the physiology of the host. In the present study, the gut bacterial communities of a laboratory-reared insecticide-susceptible (IS), and a field-collected insecticide-resistant (IR) population of a major rice pest, the brown planthopper Nilaparvata lugens, were evaluated. The deep-sequencing analysis of the V3 hypervariable region of the 16S rRNA gene was performed using Illumina and the sequence data were processed using QIIME. The toxicological bioassays showed that compared with the IS population, IR population exhibited 7.9-, 6.7-, 14.8-, and 18.7-fold resistance to acephate, imidacloprid, thiamethoxam, and buprofezin, respectively. The analysis of the alpha diversity indicated a higher bacterial diversity and richness associated with the IR population. The dominant phylum in the IS population was Proteobacteria (99.86%), whereas the IR population consisted of Firmicutes (46.06%), followed by Bacteroidetes (30.8%) and Proteobacteria (15.49%). Morganella, Weissella, and Enterococcus were among the genera shared between the two populations and might form the core bacteria associated with N. lugens. The taxonomic-to-phenotypic mapping revealed the presence of ammonia oxidizers, nitrogen fixers, sulfur oxidizers and reducers, xylan degraders, and aromatic hydrocarbon degraders in the metagenome of N. lugens. Interestingly, the IR population was found to be enriched with bacteria involved in detoxification functions. The results obtained in this study provide a basis for future studies elucidating the roles of the gut bacteria in the insecticide resistance-associated symbiotic relationship and on the design of novel strategies for the management of N. lugens.


Assuntos
Biota , Hemípteros/efeitos dos fármacos , Hemípteros/microbiologia , Resistência a Inseticidas , Inseticidas/farmacologia , Animais , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enzimas/genética , Trato Gastrointestinal/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Ninfa/efeitos dos fármacos , Ninfa/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
BMC Plant Biol ; 17(1): 13, 2017 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088172

RESUMO

BACKGROUND: Glycemic response, a trait that is tedious to be assayed in cereal staples, has been identified as a factor correlated with alarmingly increasing prevalence of Type II diabetes. Reverse genetics based discovery of allelic variants associated with this nutritional trait gains significance as they can provide scope for genetic improvement of this factor which is otherwise difficult to target through routine screening methods. RESULTS: Through EcoTILLING by sequencing in 512 rice accessions, we report the discovery of six deleterious variants in the genes with potential to increase Resistant Starch (RS) and reduce Hydrolysis Index (HI) of starch. By deconvolution of the variant harbouring EcoTILLING DNA pools, we discovered accessions with a minimum of one to a maximum of three deleterious allelic variants in the candidate genes. CONCLUSIONS: Through biochemical assays, we confirmed the potential role of the discovered alleles alone or in combinations in increasing RS the key factor for reduction in glycemic response.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/genética , Polimorfismo Genético , Sintase do Amido/genética , Amido/metabolismo , Alelos , Mutação , Oryza/classificação , Oryza/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Sintase do Amido/metabolismo
8.
Plant Mol Biol ; 72(1-2): 153-69, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19834817

RESUMO

A non-antibiotic based selection system using L-lysine as selection agent and the lysine racemase (lyr) as selectable marker gene for plant transformation was established in this study. L-lysine was toxic to plants, and converted by Lyr into D-lysine which would subsequently be used by the transgenic plants as nitrogen source. Transgenic tobacco and Arabidopsis plants were successfully recovered on L-lysine medium at efficiencies of 23 and 2.4%, respectively. Phenotypic characterization of transgenic plants clearly revealed the expression of normal growth and developmental characteristics as that of wild-type plants, suggesting no pleiotropic effects associated with the lyr gene. The specific activity of Lyr in transgenic tobacco plants selected on L: -lysine ranged from 0.77 to 1.06 mU/mg protein, whereas no activity was virtually detectable in the wild-type plants. In addition, the composition of the free amino acids, except aspartic acid, was not affected by the expression of the lyr gene in the transgenic tobacco plants suggesting very limited interference with endogenous amino acid metabolism. Interestingly, our findings also suggested that the plant aspartate kinases may possess an ability to distinguish the enantiomers of lysine for feedback regulation. To our knowledge, this is the first report to demonstrate that the lysine racemase selectable marker system is novel, less controversial and inexpensive than the traditional selection systems.


Assuntos
Isomerases de Aminoácido/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Isomerases de Aminoácido/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Southern Blotting , Western Blotting , Lisina/metabolismo , Modelos Genéticos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/metabolismo , Transformação Genética
9.
Appl Environ Microbiol ; 75(15): 5161-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19502445

RESUMO

A lysine racemase (lyr) gene was isolated from a soil metagenome by functional complementation for the first time by using Escherichia coli BCRC 51734 cells as the host and d-lysine as the selection agent. The lyr gene consisted of a 1,182-bp nucleotide sequence encoding a protein of 393 amino acids with a molecular mass of about 42.7 kDa. The enzyme exhibited higher specific activity toward lysine in the l-lysine-to-d-lysine direction than in the reverse reaction.


Assuntos
Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Biblioteca Gênica , Lisina/metabolismo , Microbiologia do Solo , Isomerases de Aminoácido/química , Sequência de Aminoácidos , Sequência de Bases , Cátions Bivalentes/farmacologia , Clonagem Molecular , Coenzimas/farmacologia , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Peso Molecular , Análise de Sequência de DNA
10.
J Appl Genet ; 48(4): 337-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17998590

RESUMO

Genetic diversity among 35 rice accessions, which included 19 landraces, 9 cultivars and 7 wild relatives, was investigated by using microsatellite (SSR) markers distributed across the rice genome. The mean number of alleles per locus was 4.86, showing 95.2% polymorphism and an average polymorphism information content of 0.707. Cluster analysis based on microsatellite allelic diversity clearly demarcated the landraces, cultivars and wild relatives into different groups. The allelic richness computed for the clusters indicated that genetic diversity was the highest among wild relatives (0.436), followed by landraces (0.356), and the lowest for cultivars. Allelic variability among the SSR markers was high enough to categorize cultivars, landraces and wild relatives of the rice germplasm, and to catalogue the genetic variability observed for future use. The results also suggested the necessity to introgress genes from landraces and wild relatives into cultivars, for cultivar improvement.


Assuntos
DNA de Plantas/genética , Variação Genética , Repetições de Microssatélites , Oryza/genética , Alelos , Genoma de Planta , Genótipo , Oryza/classificação , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA